
jw.mailfilter Documentation
Release 0.2

Johnny Wezel

March 10, 2016

Contents

1 Installation 3

2 Configuration 5
2.1 Account definition . 6

3 Filters 7
3.1 Filter specification . 7
3.2 Filter lists . 7
3.3 Nested filter lists . 7
3.4 Action routines . 8
3.5 Action clause . 8
3.6 Built-in filters . 9

3.6.1 Filter: header . 9
3.6.2 Filter: body . 9
3.6.3 Filter: rbl . 9
3.6.4 Filter: pyzor . 10
3.6.5 Filter: url . 10
3.6.6 Filter: all . 10
3.6.7 The check argument in header and body filters . 10

4 Actions 11
4.1 Action: copy-to . 11
4.2 Action: move-to . 11
4.3 Action: delete . 11
4.4 Action: set-flag . 12
4.5 Action: clear-flag . 12
4.6 Action: report-pyzor . 12
4.7 Action: report-badips . 12
4.8 Action: forward-to . 12
4.9 Action: stop . 12

5 Logging 15

6 YAML 17
6.1 Values . 17

6.1.1 String . 17
6.1.2 Integer . 17
6.1.3 Floating point . 18
6.1.4 Boolean . 18

i

6.1.5 Null value . 18
6.2 Lists . 18

6.2.1 Nested lists . 19
6.3 Maps . 19

6.3.1 Nested maps . 19
6.4 Nesting lists and maps . 20
6.5 Quoting . 20

7 Indices and tables 21

ii

jw.mailfilter Documentation, Release 0.2

Contents:

Contents 1

jw.mailfilter Documentation, Release 0.2

2 Contents

CHAPTER 1

Installation

The package is registered on pypi.python.org, so the usual

pip install jw.mailfilter

will do.

3

jw.mailfilter Documentation, Release 0.2

4 Chapter 1. Installation

CHAPTER 2

Configuration

Configuration files are written in YAML. A short introduction to the YAML syntax is given in the chapter YAML
Syntax. A minimal configuration file would look like this:

accounts:
Google Mail:

address: imap.gmail.com
username: john.doe@gmail.com
password: _My_PaSswOrd_
ssl: true
time-out: 300
idle: on
folders:

- [INBOX, {filter: rbl, org: bl.spamcop.net, action: delete}]
smtp:

host: smtp.gmail.com

logging:
version: 1
formatters:

default:
format: '%(asctime)s:%(name)-32s:%(funcName)-16s:%(levelname)-8s: %(message)s'

handlers:
mailfilter:

class: logging.handlers.RotatingFileHandler
formatter: default
FILENAME:
filename: _test/log
backupCount: 4
maxBytes: 4194304

loggers:
mailfilter:

handlers: [mailfilter]
LOG LEVEL:
level: INFO

As you see there are two sections, the latter one only concerned about logging. More about that in the logging chapter.

The main section for defining IMAP accounts and what should happen with them is defined in the accounts section.

5

http://yaml.org

jw.mailfilter Documentation, Release 0.2

2.1 Account definition

The address item specifies the domain name of the IMAP server, username and password the account credentials. If
SSL is to be used, an ssl item may be given with a value of true, yes or on. If it is missing, false is assumed.

A time-out item, expressed in seconds, specifies how often to poll the account. A time-out value can also be specified
in the global <global.html>_ section.

If the server provides IDLE push notifications, idle with a True value can be added. If idle is missing, False is assumed.

The folders to be examined are specified in the folders item as a list. Each item is a list consisting of a folder name
and a filter specification.

Forwarding an email requires access to an SMTP server. The smtp section in the account requires a host item specifying
the server’s domain name. Optionally, a username and password item may be given if they are different from the
ones in the account definition. An smtp section can also be put into the global section, which will provide a default
specification.

6 Chapter 2. Configuration

CHAPTER 3

Filters

A filter specification defines what conditions have to be met and what actions are taken when a condition is met.

3.1 Filter specification

A filter specification is usually written as for example:

{filter: rbl, org: bl.spamcop.net, action: delete}

where the filter clause specifies the name of the filter to apply, in this case “rbl”, a filter that checks whether the sending
mail server’s IP is registered as spam source. The remaining clauses are parameters for the filter. The action clause is
mandatory with all filters. In the example, the org clause, required by rbl filters, specifies which RBL service is to be
queried.

3.2 Filter lists

Since a filter definition can easily occupy a whole line, it is more convenient to put each of them on its own line when
specifying multuple filters for a folder. For this YAML’s block style is better suited to the task. So a list of filters
would look like

folders:
- INBOX
-

- {filter: header, part: subject, check: "has cana?dia?n\s+pha?rma?cy", action: delete}
- {filter: header, part: from, check: "is-not .*@goodguy.org", action: delete}
- {filter: header, part: subject, check: "is \[mail-list\].*", action: move-to mail-list}

But nothing prevents you from writing the above list in flow style, for example:

folders: [INBOX, [
{filter: header, part: subject, check: "has cana?dia?n\s+pha?rma?cy", action: delete},
{filter: header, part: from, check: "is-not .*@goodguy.org", action: delete},
{filter: header, part: subject, check: "is \[mail-list\].*", action: move-to mail-list}]]

3.3 Nested filter lists

YAML provides a good deal of flexibility with data definitions. One particularly useful feature is anchors. To make
use of these, filter lists can be nested. Together, easily switchable alternatives can be defined, for example:

7

jw.mailfilter Documentation, Release 0.2

my-alternatives-list:
- &alternative1

- {filter: header, part: subject, check: "has cana?dia?n\s+pha?rma?cy", action: delete}
- {filter: header, part: from, check: "is-not .*@goodguy.org", action: delete}
- {filter: header, part: subject, check: "is \[mail-list\].*", action: move-to mail-list}

- &alternative2
- {filter: header, part: subject, check: "has cana?dia?n\s+pha?rma?cy", action: move-to INBOX/Spam}
- {filter: header, part: from, check: "is-not .*@goodguy.org", action: move-to INBOX/Spam}
- {filter: header, part: subject, check: "is \[mail-list\].*", action: move-to INBOX/Spam}

accounts:
Google Mail:

address: imap.gmail.com
username: john.doe@gmail.com
password: _My_PaSswOrd_
ssl: true
folders:

- [INBOX, *alternative1]

Thus the filter rules in the Google Mail account can be switched quickly from alternative1 to alternative2. The filter
rule is seen by the program as a list of lists which, in itself, doesn’t make much sense. It’s only there to make use of
YAML’s anchor feature. The possibilities are enless. Consider:

my-sub-alternatives:
- &all-rules

- &special-rule
- {filter: header, part: subject, check: "has cana?dia?n\s+pha?rma?cy", action: delete}

- &main-rules:
- {filter: header, part: from, check: "is-not .*@goodguy.org", action: move-to INBOX/Spam}
- {filter: header, part: subject, check: "is \[mail-list\].*", action: move-to INBOX/Spam}

You can switch between all-rules, main-rules and special-rule in an instant.

3.4 Action routines

Notice the repetition in the the previous examples’ action arguments. It would get worse if a list of actions should be
run. Fortunately, YAML anchors provide the solution to this problem as well:

my-actions:
- report-pyzor
- report-badips
- delete

my-rules:
- {filter: header, part: from, check: "is-not .*@goodguy.org", action: *my-actions}
- {filter: header, part: subject, check: "is \[mail-list\].*", action: *my-actions}

3.5 Action clause

The action clause, required by all filters, may be a single item or a list of items. Since it is the same for all filters, it is
not mentioned in descriptions below. See Actions for a description of actions.

8 Chapter 3. Filters

jw.mailfilter Documentation, Release 0.2

3.6 Built-in filters

The following filters are included in this packages. More filters can be added through extensions.

3.6.1 Filter: header

Arguments: part, check

The part argument specifies which header is to be examined. Common values are from (sender), to (recipient), subject,
date (actually the time), but generally, anything occurring in the header section of a mail is possible.

For an explanation of the check argument, see The check argument in header and body filters.

Examples:

{filter: header, part: subject, check: "has cana?dia?n\s+pha?rma?cy", action: delete}
{filter: header, part: from, check: "is-not .*@goodguy.org", action: delete}
{filter: header, part: subject, check: "is \[mail-list\].*", action: move-to mail-list}

3.6.2 Filter: body

Arguments: check

Checks for contents in the body of the e-mail. For an explanation of the check argument, see The check argument in
header and body filters.

Examples:

{filter: body, check: "has cana?dia?n\s+pha?rma?cy", action: move-to Spam}

Note: The is and is-not operators are less useful in the body filter. Use has instead.

3.6.3 Filter: rbl

Arguments: org

Checks whether the IP of the sending server is registered with an RBL (real-time block list). There is a vast number of
organizations providing such black lists. The org parameter specifies which one is to be used. These black lists answer
domain name requests in a specific format and the org parameter specifies the right part of it. Here is a list with the
values for some of the most prominent RBLs in use today:

RBL organization org value
Spamcop bl.spamcop.net
Spamhaus zen.spamhaus.org
Barracuda b.barracudacentral.org

Examples:

{filter: rbl, org: bl.spamcop.net, action: delete}

3.6. Built-in filters 9

https://en.wikipedia.org/wiki/DNSBL

jw.mailfilter Documentation, Release 0.2

3.6.4 Filter: pyzor

Checks whether there is a signature of the whole mail message registered with Pyzor. These signatures designate spam
messages previously reported to Pyzor.

Examples:

{filter: pyzor, action: delete}

3.6.5 Filter: url

Checks whether the mail contains URLs known as spam source.

Examples:

{filter: url, action: delete}

3.6.6 Filter: all

This is not exactly a filter. It applies actions to all messages encountered during the scan process.

Examples:

{filter: all, action: [report-badips, report-pyzor, delete]}

Note: Be careful with this filter. It is intended to be used on folders where messages are copied or moved under some
control. Do not use it on the INBOX folder (except if the account is a honey pot anyway).

3.6.7 The check argument in header and body filters

The check argument specifies how to compare the value. The format is operator operands, where operator is one
of: is, is-not, has, has-no or has-all. For operands, a single value or a list of values can be given, depending on the
requirements of the operator.

The is operator does a regular expression match of a single value against the pattern in the operand. The is-not operator
succeeds if the pattern does not match.

To search for a regular expression anywhere in the header or body, use the has operator. If you want to check against
more than one pattern and you want to make sure all of them are found, use has-all. If you want to make sure none of
a number of patterns are found, use has-no.

Note: Since regular expressions tend to use characters also used by YAML, it is a good idea to quote the value.

10 Chapter 3. Filters

http://pyzor.org

CHAPTER 4

Actions

Actions are specified with the action argument to a Filter definition. The action parameter takes either a single action
or a list of actions, for example:

action: delete

action: [report-pyzor, forward-to abuse@godaddy.com, delete]

The follwing actions are built-in. More actions can be added through plugins.

4.1 Action: copy-to

Copies the message to a folder. The folder is created if it does not exist.

Example:

action: copy-to INBOX/Spam

4.2 Action: move-to

Moves the message to a folder. The folder is created if it does not exist.

Example:

action: move-to INBOX/Business

4.3 Action: delete

Deletes the message

Example:

action: delete

11

jw.mailfilter Documentation, Release 0.2

4.4 Action: set-flag

Sets an IMAP flag. The set of flags depends on the server. Probably the most minimal set of flags is: \Deleted,
\Seen and \Answered. Flags supported by other servers are: \Draft, \Flagged and even user defined flags.
Remember that the backslash \ needs to be doubled because it is itself used to quote single characters.

Example:

action: set-flag \\Flagged

4.5 Action: clear-flag

Clears an IMAP flag. See set-flag.

Example:

action: clear-flag \\Deleted

4.6 Action: report-pyzor

Reports the message to Pyzor as spam. The pyzor filter will then detect the same message as spam.

Example:

action: report-pyzor

4.7 Action: report-badips

Reports the sending server’s IP to badips.com as spammer.

Example:

action: report-badips

4.8 Action: forward-to

Forwards the message to another e-mail address. For this, an SMTP account has to be defined in ‘global-
parameters‘_.

Example:

action: forward-to abuse@spamdomain.com

4.9 Action: stop

Stop processing further filters for this message. This is only useful in combination with nested filter lists.

Example:

12 Chapter 4. Actions

jw.mailfilter Documentation, Release 0.2

action: stop

4.9. Action: stop 13

jw.mailfilter Documentation, Release 0.2

14 Chapter 4. Actions

CHAPTER 5

Logging

The logging section in the configuration file specifies how logging should work.

For now, only two important settings are discussed here. An example of a logging section:

accounts:
Google Mail:

address: imap.gmail.com
username: john.doe@gmail.com
password: _My_PaSswOrd_
ssl: true
folders:

- [INBOX, {filter: rbl, org: bl.spamcop.net, action: delete}]

logging:
version: 1
formatters:

default:
format: '%(asctime)s:%(name)-32s:%(funcName)-16s:%(levelname)-8s: %(message)s'

handlers:
mailfilter:

class: logging.handlers.RotatingFileHandler
formatter: default
FILENAME:
filename: _test/log
backupCount: 4
maxBytes: 4194304

loggers:
mailfilter:

handlers: [mailfilter]
LOG LEVEL:
level: INFO

The filename entry specifies the path of the log file. The level entry specifies the log level. Valid log levels are:
DEBUG, INFO, WARNING, ERROR and CRITICAL.

Note: The logging section is the YAML equivalent of the dict to be supplied to the logging.config.dictConfig()
function. For a complete explanation of the logging section, see the Logging facility for Python.

15

https://docs.python.org/2/library/logging.html

jw.mailfilter Documentation, Release 0.2

16 Chapter 5. Logging

CHAPTER 6

YAML

YAML is a data description language similar to JSON, but with human readability in mind.

There are two fundamental data container types making up a data structure: lists and maps. All other data is scalar,
meaning a single data items.

A list is a sequence of data items, one after another. Maps are an unordered set of data items with an associated
key. Since lists and maps can be nested, they themselves become data items. In YAML, both can be written in two
notations: either the block style or the flow style. The two styles can be chosen for every data item indivdually and can
be mixed freely.

6.1 Values

Simple values (scalar values) can have the following types:

• string

• integer

• floating point

• boolean

• null value

6.1.1 String

A sequence of characters is normally taken as a string. However, if a different data type is detected, that data type is
returned to the program. To force a sequence of characters to be interpreted as a string, it can be quoted with either
single quote or double quotes:

- '123' # would be taken as integer otherwise
- "2.4" # would be taken as floating point value otherwise
- 'yes' # would be taken as a boolean otherwise

Strings containing the following characters have to be quoted: [] { } ~ & * | > ! # @ % ‘.

6.1.2 Integer

A number without decimal point:

17

http://json.org

jw.mailfilter Documentation, Release 0.2

- 200
- -123

6.1.3 Floating point

A number with decimal point:

- 1.2
- -3.4

6.1.4 Boolean

Either a value for true:

- true
- yes
- on

or a value for false:

- false
- no
- off

6.1.5 Null value

One of these:

- ~
- null

6.2 Lists

A list in block style:

- item 1
- item 2
- item 3

A list in flow style:

[item 1, item 2, item3]

or:

[
item 1,
item 2,
item 3

]

In flow style, tokens can be formatted freely with white space, where as in block style, the line format must be kept.

18 Chapter 6. YAML

jw.mailfilter Documentation, Release 0.2

6.2.1 Nested lists

Lists can be nested:

-
- Item 1a
- Item 1b

-
- Item 2a
- Item 2b

or:

[
[Item 1b, Item 1b],
[Item 2a, Item 2b]

]

or a mix of block and flow style:

- [Item 1a, Item 1b]
- [Item 2a, Item 2b]

6.3 Maps

A map in block style:

First name: Jack
Last name: Miller
Email: jack.miller@gmail.com

A map in flow style:

{First name: Jack, Last name: Miller, Email: jack.miller@gmail.com}

Again, as with lists in flow style, white space can be used to format the data:

{
First name: Jack,
Last name: Miller,
Email: jack.miller@gmail.com

}

6.3.1 Nested maps

Nested maps in block style:

Key1: Value1
Key2:

Key2a: Value2a
Key2b: Value2b

In flow style:

{
Key1: Value1,
Key2: {

6.3. Maps 19

jw.mailfilter Documentation, Release 0.2

Key2a: Value2a,
Key2b, Value2b

}
}

6.4 Nesting lists and maps

A list of maps in block style:

-
Key1a: Value1a
Key1b: Value1b

-
Key2a: Value2a
Key2b: Value2b

In flow style:

[{Key1a: Value1a, Key1b: Value1b}, {Key2a: Value2a, Key2b: Value2b}]

A map of lists in block style:

Key1:
- Item 1a
- Item 1b

Key2:
- Item 2a
- Item 2b

In flow style:

{Key1: [Item 1a, Item 1b], Key2: [Item 2a, Item 2b]}

6.5 Quoting

Certain characters are used in YAML to make up the syntax for data definitions. Also, certains words are used to
denote certain data values. These are: [] { } , : - and ~. Reserved words are: null, true, false, yes, no, on and off.

When writing data items containing the reserved characters or as the character sequence of the reserved words, a data
value has to be written in either single or double quotes:

- "Item [1]"
- 'Item {2}'
- 'null'
- 'yes'

20 Chapter 6. YAML

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

21

	Installation
	Configuration
	Account definition

	Filters
	Filter specification
	Filter lists
	Nested filter lists
	Action routines
	Action clause
	Built-in filters
	Filter: header
	Filter: body
	Filter: rbl
	Filter: pyzor
	Filter: url
	Filter: all
	The check argument in header and body filters

	Actions
	Action: copy-to
	Action: move-to
	Action: delete
	Action: set-flag
	Action: clear-flag
	Action: report-pyzor
	Action: report-badips
	Action: forward-to
	Action: stop

	Logging
	YAML
	Values
	String
	Integer
	Floating point
	Boolean
	Null value

	Lists
	Nested lists

	Maps
	Nested maps

	Nesting lists and maps
	Quoting

	Indices and tables

